DETECTION OF MODERATE ANTHELMINTIC RESISTANCE IN CLOSTANTEL AND MACROCYCLIC LACTONE IN ORGANIZED CENTRAL SHEEP BREEDING FARM OF HARYANA, INDIA

Hardeep kalkal*, Sukhdeep Vohra

Received 23 March 2021, revised 07 May 2022

ABSTRACT: This study was performed to evaluate the efficacy of currently used anthelmintics in organized central breeding sheep farm (CSBF) in Hisar, Haryana using faecal egg count reduction test (FECRT). A total of 60 sheep were chosen for this study and divided equally into four groups. Sheep were tested with closantel (@10mg/kg body weight) and two derivatives of macrocyclic lactone, moxidectin and doramectin (@0.2mg/kg body weight) while the control group did not receive any treatment. Sheep were naturally infected with gastro-intestinal nematodes and having EPG of faeces more than 150 counts before treatment were selected. Rectal faecal samples were collected on zero (pre-treatment) and 14th day (post-treatment) from animals of all groups and EPG of faeces were carried out by modified McMaster technique. In FECRT, reduction of faecal egg count (FEC) of less than 95%, indicate anthelmintic resistance (AR) in one or more nematode genera for the given anthelmintic. Per cent of FEC on 14th day revealed that closantel, moxidectin and doramectin had 64%, 69% and 76% efficacy, respectively. Coprocultures from pre- and post-treated sheep revealed predominance *Haemonchus contortus* larvae. The result indicated development of moderate anthelmintic resistance against three anthelmintics, leading to change of anthelminthic drugs and regular monitoring for possible anthelmintic resistance in the farm.

Key words: Anthelmintic resistance, Closantel, Macrocyclic lactones, Small ruminants, FECRT.

The small ruminant industry faces huge economic loss due to high prevalence of gastrointestinal nematodes (GIN) in tropical and sub-tropical counties like India. The state of Haryana lies in the northern region of India. Gastrointestinal nematodes cause economic loss in terms of wool, meat, milk, skin, manure and costs of control measures and death of animals. Adoptions of suitable control measures against these GINs are important for small ruminants, targeted farmer groups and for preventing economic loss of a country. Continuous and long-term use of anthelmintics without any preceding testing remains the mainstay of prevention in many herds. Anthelmintic resistance can be defined as the ability of parasites to survive doses of drugs that would normally kill parasites of the same species and stage. It is inherited and selected because the survivors of treatments pass genes for resistance onto their offspring (Geary et al. 2012). The use of the same anthelmintics in long term, its underdosing, overdosing, frequently repeated treatments and lack of quarantine has led to worldwide anthelmintic resistance (AR) in gastrointestinal nematodes which alarming situation for small ruminants farming in Haryana, India. Several reports of AR against closantel and macrocyclic lactone from different parts of Haryana and India (Gupta et al. 2003, Buttar et al. 2012, Bihaqi et al. 2020) as well as from different countries (Verissimo et al. 2012, Pena-Espinoza et al. 2014, Garcia et al. 2016). Thus, for maintaining the efficacy of the available drugs, regular monitoring of the status of anthelmintic resistance is required, at least once in two years. Therefore, the present study was planned to investigate the current status of anthelmintic resistance.
and there were no studies against moxidectin and doramectin in CSBF, Hisar Haryana. So we used the anthelmintic resistance method *i.e., in vivo* faecal egg count reduction test (FECRT) for checking the efficacy of closantel, moxidectin and doramectin treatment in sheep.

Study pattern

Central sheep breeding farm (CSBF) have 2456 acres of land for rearing, breeding and upgrading sheep and goat. In total they have 2500 sheep of either Corriedale cross Sonadi or Rambouillet cross Nali ewe or ram. We used 60 Corriedale cross Sonadi ewes (above 3 months) for the present survey which were not dewormed from last three months.

Faecal egg count reduction test

Faecal egg count reduction test was carried according to the method described by the World Association for Advancement of Veterinary Parasitology (WAAVP) (Coles *et al.* 1992). Four groups of 15 sheep (S1, S2, S3 and S4) were formed and weighed and treated according to body weight on zero day (15 January 2020). Sheep from group S1 remained untreated as a control, group S2 was treated with Closantel (Zycloz®, 10mg/kg oral solution, Zydus), group S3 with Moxidectin (Moxidecton® 1% injection, 0.2 mg/kg Intas) and group S4 with doramectin (Dectomax® 1% injection, 0.2 mg/kg, Zoetis). After 14th day (28 January 2020), the rectal samples were taken from all sheep treated with anthelminthic, except the control group. Egg counts were performed using a modified McMaster method with a sensitivity of 50 (one egg in the counting chamber represents 50 eggs). Pooled faecal cultures were kept at 27±2°C for 7 days to recover infective third stage larvae *i.e., L₃* from each group. The infective larvae were identified as per the criteria of Keith (1953). Faecal egg count reduction percentage and confidence intervals (95%) were determined following the method of the WAAVP using arithmetic mean egg counts. Resistance was considered to be present in the worm population when the egg count reduction following treatment was less than 95% and the confidence limits were less than 90% (Coles *et al.* 1992).

Result and analysis

The results revealed that closantel, moxidectin and doramectin reduced the faecal egg counts by 64, 76 and 69% on 14th day, respectively which indicates moderate resistance. Faecal egg counts (Mean ± S.E.) on 0 and 14th day post-treatment (PT), per cent reduction in faecal egg counts (FECR%), variance, 95% upper confidence limits and larval composition treated with different anthelmintics are given in Table 1. The highest reduction of egg counts on 14th day was observed in moxidectin 76% with 95% upper confidence levels as 32.51. Doramectin reduced 69% of egg counts on 14th day with 95% upper confidence levels as 37.53. Closantel reduced egg count 64% with 95% upper confidence levels as 32.78. These values suggest that GINs have developed...
moderate resistance against all the three drugs i.e. closantel, moxidectin and doramectin. The composition of larvae for all three drugs on 14th day was having 100% H. contortus.

Closantel showed (64%) moderate resistance in sheep on 14th day post-treatment with the predominance of H. contortus L₂ larvae. Our findings are in agreement with Gupta et al. (2003), Fiel et al. (2011) and Ploeger and Everts (2018) who reported moderate resistance in Hisar, Argentina, and Netherlands. While in contrast Meenakshisundaram et al. (2014), Vohra et al. (2019) and Eye et al. (2020) reported high efficacy in Tamil Nadu, Hisar and Mongolia, respectively. The reason for moderate resistance against closantel may be due to continuous use of closantel from last 2 years as recorded from management history of farms and its use against liver fluke since the emergence of triclabendazole resistance in liver fluke in the late 1990s (Moll et al. 2000). Closantel high efficacy in Haryana reported by Vohra et al. (2019) was in unorganized sheep farm where regular deworming is not practised. So proper use and continuous investigation are advised for closantel return regular deworming is not practised. So proper use and continuous investigation are advised for closantel return to moderate resistance with predominance of L₂ larvae. Our findings are in agreement with Keith (1953). The result showed different genera of GINs of sheep with the predominance of H. contortus followed by Trichostrongylus spp. and Strongyloides papillosus larvae on day 0. After 14th days of treatment, H. contortus was the only species found to survive in all treatment groups. The strain of H. contortus resistance to various anthelmintics in sheep has already been reported by Fleming et al. (2006) and Singh et al. (2013).

The investigation against closantel, moxidectin and doramectin revealed moderate resistance in CSBF of Hisar. Our reports are unique as there are no reports of resistance against moxidectin and doramectin from India while the decrease in the efficacy of closantel drugs was observed. So, we recommended choice of anthelmintic in a farm should be based on the previous history of use of drug, frequency of use of drug and status of anthelmintic resistance. It should always be considered primarily to use an anthelmintic judiciously and the anthelmintic resistance may be estimated at least once in two years. The drugs which show partial resistance should be changed immediately and discontinued for some years so that the larval population resistant to the drug is diluted and the portion of susceptible larval population is increased in the sheep flocks. Moreover, further such types of studies are needful in the Haryana to monitor and validate resistance against closantel, moxidectin and doramectin.

Acknowledgement
The authors are thankful to the Department of Veterinary Parasitology, College of Veterinary Sciences Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar for providing all the facilities for studies related to this research.

REFERENCES

